Pd Complex-Promoted Cyclopolymerization of Functionalized α, ω-Dienes and Copolymerization with Ethylene to Afford Polymers with Cyclic Repeating Units

Sehoon Park, Daisuke Takeuchi, and Kohtaro Osakada*
Chemical Resources Laboratory, Tokyo Institute of Technology, 4259 Nagatsuta, Yokohama 226-8503, Japan

Received December 20, 2005; E-mail: kosakada@res.titech.ac.jp

The cyclopolymerization of nonconjugated dienes converts acyclic monomers into polymers with cyclic repeating units. The complexes of the early transition metals Ti, Zr, and Y catalyze the polymerization of 1,5-hexadiene and 1,6-heptadiene to produce polymers with 1,3-disubstituted five- and six-membered cyclic repeating units..1,2 These polymers, however, consist of both transand cis-fused rings arranged randomly in a polymer chain. Stereoselective cyclopolymerization is of importance because polymers whose cyclic repeating units are arranged in a controlled manner exhibit unique properties. ${ }^{3}$ The complexes of late transition metals, such as Ru, Rh, and Pd , have recently been reported to catalyze the cyclization of enynes and dienes. ${ }^{4}$ The Brookhart-type Pd catalyst $[\mathrm{PdCl}(\mathrm{Me})($ phen $)]-\mathrm{NaBARF}\left(\mathrm{BARF}=\left[\mathrm{B}\left\{\mathrm{C}_{6} \mathrm{H}_{3}\left(\mathrm{CF}_{3}\right)_{2^{-}}\right.\right.\right.$ $\left.3,5\}_{4}\right]^{-}$) catalyzes the cyclizative hydrosilylation and cycloisomerization of diallylmalonates to afford compounds with 1,2disubstituted trans-fused five-membered rings. ${ }^{5}$ The combination of the stereoselective ring formation and the insertion of a $\mathrm{C}=\mathrm{C}$ bond of a diene, which occur alternately, produces the polymers with cyclic repeating units with a high regularity. Such a polymerization of dienes using late-transition-metal catalysts has not yet been reported. In this paper, we report the Pd complex-catalyzed cyclopolymerization of diallyl monomers to produce polymers with five-membered rings as well as the copolymerization of these monomers with ethylene.

A catalyst prepared from the Pd diimine complex (1a) and NaBARF^{6} initiates the cyclopolymerization of isopropylidene diallylmalonate (\mathbf{I}) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at room temperature to produce the polymer $-\left(\mathrm{CH}_{2}-\mathrm{C}_{5} \mathrm{H}_{6}\left(\mathrm{C}_{5} \mathrm{H}_{6} \mathrm{O}_{4}\right)-\mathrm{CH}_{2}\right)_{n}-($ poly $-\mathbf{I})$ (eq 1). The

results of the polymerization using complexes $\mathbf{1 a}-\mathbf{1 d}$ are summarized in Table 1. Figure 1 shows the ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra of poly-I formed by using 1a (i and ii) and by using new Pd complex 1c (iii). The former polymer shows the signals of the CH and CH_{2} carbons of the five-membered ring at $\delta 46.6-47.1$ and 45.8 , respectively, while the corresponding signals of the latter appear at $\delta 46.5$ and 45.6. The signal of the carbonyl carbon is observed

Table 1. Polymerization of Diallyl Monomers by Pd Complexesa ${ }^{a}$

run	monomer	Pd	solvent (mL)	time (h)	conv. $(\%)$	$M_{\text {n }}$	$M_{w} / M_{\text {n }}$
1	I	$\mathbf{1 a}$	0.5	24	56	7900	1.51
2	I	$\mathbf{1 b}$	0.5	24	95	9200	1.75
3	I	$\mathbf{1 c}$	0.25	24	55	4400	1.69
4	I	$\mathbf{1 d}$	0.25	29	78	8400	1.82
5	II	1b	0.25	48	53	9400	1.71
6	III	$\mathbf{1 a}$	0.5	12	40	3600	1.28
7	IV	$\mathbf{1 b}$	0.25	24	35	6200	1.56

[^0] mmol , $[$ monomer $] /[\mathrm{Pd}]=70$, solvent $=\mathrm{CH}_{2} \mathrm{Cl}_{2}$, at room temperature.

Figure 1. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra of poly-I in CDCl_{3} at $25^{\circ} \mathrm{C}$. (i) Total and (ii) expanded spectra of poly-I prepared by polymerization of \mathbf{I} in $\mathrm{CH}_{2^{-}}$ Cl_{2} catalyzed by $\mathbf{1 a} / \mathrm{NaBARF}$. (iii) Expanded spectrum of the polymer obtained by the reaction catalyzed by $\mathbf{1 c} / \mathrm{NaBARF}$. The peak with an asterisk is that of the solvent.
at $\delta 172.0$ for the polymers. Both polymers are composed of trans-1,2-disubstituted five-membered rings because the difference of the peaks due to CH and CH_{2} carbons (ca. 1 ppm) and the position of the carbonyl carbon peak are quite similar to the model compound with trans structure. ${ }^{7}$ Figure 1(iii) contains the signal at $\delta 46.5$, suggesting regulated tacticity of the polymer. We assigned the structure rich in isotactic-type tacticity (Scheme 1) for the polymer which was obtained by polymerization catalyzed by $\mathbf{1 c}(r r=83 \%)$ and by $1 \mathbf{d}(r r=62 \%)$ because $1 \mathbf{c}$ and $1 d$ have a C_{2}-symmetric structure. The structure of $\mathbf{1 d}$ was confirmed by X-ray crystallography. Analogous Ni complexes with a C_{2} symmetry catalyze polymerization of propylene and trans-2-butene to produce the isotactic polymers. ${ }^{8}$

To determine the structure of the growing polymer end, an NMR study of the reaction mixture at a low temperature was conducted.

Scheme 1. Isotactic Tetrad of Poly-I

Scheme 2. Equimolar Reaction of I with 1a/NaBARF

The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra of a mixture of $\mathbf{1 a}, \mathrm{NaBARF}$, and \mathbf{I} ([1a]:[NaBARF]:[I] = 1:1.2:20) in CDCl_{3} at $-40^{\circ} \mathrm{C}$ showed an exclusive formation of the cyclopentylmethyl palladium complex A, as shown in Scheme 2. The insertion of a double bond of \mathbf{I} into the $\mathrm{Pd}-\mathrm{Me}$ bond of $\mathbf{1 a}$ and the ensuing intramolecular insertion of the remaining $\mathrm{C}=\mathrm{C}$ bond resulted in \mathbf{A}. Two carbonyl carbon signals are observed at $\delta 187.3$ and 164.4 , at which the former signal appears at a significantly lower field than the latter because of the coordination of the carbonyl group to the Pd center. ${ }^{9}$ Upon warming the reaction mixture to $20^{\circ} \mathrm{C}$, signals of poly-I appear at $\delta 172.1,104.9,51.0,45.9$, and 28.8 , whereas those of the CH_{2} and CH carbons of the cyclopentylmethyl group attached to Pd appear at $\delta 31.5$ and 49.5 , respectively. These results indicate that the carbonyl-chelated Pd complex A initiates polymer growth. ${ }^{6 b}$ The polymerization of I $(0.500 \mathrm{M})$ by 1a obeys pseudo-first-order kinetics ($k_{\text {obsd }}=1.54 \times 10^{-5} \mathrm{~s}^{-1}$ at $20^{\circ} \mathrm{C}$). This suggests that the rate-determining step of polymer growth depends on the intermolecular insertion of the $\mathrm{C}=\mathrm{C}$ bond of \mathbf{I} into the $\mathrm{Pd}-\mathrm{C}$ bond of the cyclopentylmethyl palladium polymer end.

The results of the Pd-catalyzed cyclopolymerizations of II-IV are included in Table 1. The slow cyclopolymerization of II (run 5) indicates the importance of the cyclic structure of isopropylidene diallylmalonate for smooth polymerization. A diallyl monomer with no carbonyl groups, III, undergoes a rapid polymerization to afford a polymer, although the polymerization slows down at approximately 50% conversion (run 6). The N, N-diallylamine derivative (IV) also undergoes cyclopolymerization by the Pd complex at a rather lower rate (run 7).

The addition of \mathbf{I} to a $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution of $\mathbf{1 b}$ in ethylene atmosphere initiates the copolymerization of \mathbf{I} with ethylene to produce the polymer $-\left(\left(\mathrm{CH}_{2}-\mathrm{C}_{5} \mathrm{H}_{6}\left(\mathrm{C}_{5} \mathrm{H}_{6} \mathrm{O}_{4}\right)-\mathrm{CH}_{2}\right)_{n}-\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{m}\right)-$ (copoly-(I-ethylene)) (eq 2). The reaction at atmospheric ethylene pressure ($[\mathbf{I}]_{0}=0.175 \mathrm{M}$) produced a copolymer containing 3 mol $\%$ repeating units from \mathbf{I}, whereas content from \mathbf{I} increased to 42% at a higher \mathbf{I} concentration $\left([\mathbf{I}]_{0}=2.8 \mathrm{M}\right)$ and a reduced ethylene pressure (0.25 atm). The ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra of the copolymers show signals at $\delta 47.0$ and 46.5 , which respectively correspond to the CH carbons of the cyclopentane units of $-\mathrm{CH}_{2}-\mathrm{C}_{5} \mathrm{H}_{6}$ $\left(\mathrm{C}_{5} \mathrm{H}_{6} \mathrm{O}_{4}\right)-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{C}_{5} \mathrm{H}_{6}\left(\mathrm{C}_{5} \mathrm{H}_{6} \mathrm{O}_{4}\right)-\mathrm{CH}_{2}-$ and $-\mathrm{CH}_{2}-\mathrm{C}_{5} \mathrm{H}_{6}-$ $\left(\mathrm{C}_{5} \mathrm{H}_{6} \mathrm{O}_{4}\right)-\mathrm{CH}_{2}-\mathrm{CH}_{2} \mathrm{CH}_{2}-$ in a random sequence of monomer units from I and ethylene.

In summary, Pd complexes promote smooth cyclopolymerization to give a polymer with trans-1,2-disubstituted five-membered rings. The chelating coordination of a carbonyl group to the Pd center stabilizes the cyclopentylmethyl intermediate and induces the further insertion of a $\mathrm{C}=\mathrm{C}$ bond into the $\mathrm{Pd}-\mathrm{C}$ bond, instead of β-hydrogen elimination, thereby leading to polymer growth. I also undergoes copolymerization with ethylene to give a polymer with up to 42% I incorporated.

Acknowledgment. This work was supported by a Grant-in-Aid for Young Scientist No. 16750091 for Scientific Research from the Ministry of Education, Science, Sports and Culture, Japan.

Supporting Information Available: Experimental procedures for the synthesis of ligands and Pd complexes, polymerization and copolymerization, NMR data including assignment of polymer end signals and estimation of tacticity, and X-ray crystal structure analysis of a Pd complex (PDF). This material is available free of charge via the Internet at http://pubs.acs.org.

References

(1) (a) Doi, Y.; Tokuhiro, N.; Soga, K. Makromol. Chem. 1989, 190, 643. (b) Resconi, L.; Waymouth, R. M. J. Am. Chem. Soc. 1990, 112, 4953. (c) Coates, G. W.; Waymouth, R. M. J. Am. Chem. Soc. 1991, 113, 6270. (d) Kesti, M. R.; Coates, G. W.; Waymouth, R. M. J. Am. Chem. Soc. 1992, 114, 9679 . (e) Schaverien, C. J. Organometallics 1994, 13, 69. (f) Mitani, M.; Oouchi, K.; Hayakawa, M.; Yamada, T.; Mukaiyama, T. Chem. Lett. 1995, 905. (g) Naga, N.; Shiono, T.; Ikeda, T. Macromol. Chem. Phys. 1999, 200, 1466. (h) Jayaratne, K. C.; Keaton, R. J.; Henningsen, D. A.; Sita, L. R. J. Am. Chem. Soc. 2000, 122, 10490.
(2) Recently, Coates reported the cyclopolymerization of 1,6-heptadiene to give a polymer with 1,3-disubstituted six-membered ring as well as 1,2disubstituted five-membered ring. Hustad, P. D.; Tian, J.; Coates, G. W. J. Am. Chem. Soc. 2002, 124, 3614.
(3) (a) Janiak, C.; Lassahn, P. G. Macromol. Rapid Commun. 2001, 22, 479. (b) Natori, I.; Imaizumi, K.; Yamagishi, H.; Kazunori, M. J. Polym. Sci. Part B, Polym. Phys. 1998, 36, 1657.
(4) (a) Trost, B. M.; Krische, M. J. Synlett 1998, 1. (b) Radetich, B.; RajanBabu, T. V. J. Am. Chem. Soc. 1998, 120, 8007. (c) Yamamoto, Y.; Nakagai, Y.; Ohkoshi, N.; Itoh, K. J. Am. Chem. Soc. 2001, 123, 6372.
(5) (a) Widenhoefer, R. A.; DeCarli, M. A. J. Am. Chem. Soc. 1998, 120, 3805. (b) Perch, N. S.; Kisanga, P.; Widenhoefer, R. A. Organometallics 2000, 19, 2541. (c) Perch, N. S.; Widenhoefer, R. A. J. Am. Chem. Soc. 2004, 126, 6332. (d) Widenhoefer, R. A. Acc. Chem. Res. 2002, 35, 905.
(6) (a) Johnson, L. K.; Killian, C. M.; Brookhart, M. J. Am. Chem. Soc. 1995, 117, 6414. (b) Johnson, L. K.; Mecking, S.; Brookhart, M. J. Am. Chem. Soc. 1996, 118, 267. (c) Tempel, D. J.; Johnson, L. K.; Huff, R. L.; White, P. S.; Brookhart, M. J. Am. Chem. Soc. 2000, 122, 6686. (d) Gates, D. P.; Svejda, S. A.; Oňate, E.; Killian, C. M.; Johnson, L. K.; White, P. S.; Brookhart, M. Macromolecules 2000, 33, 2320.
(7) trans-3,4-Dimethylcyclopentane-1,1-dicarboxylate shows the signals due to $\mathrm{CH}, \mathrm{CH}_{2}$, and CO carbons at $\delta 43.2,42.0$ (difference 1.2 ppm), and 173.8, while the corresponding carbons of the cis isomer appear at $\delta 41.2$, 36.8 (difference 4.4 ppm), and 173.5, 173.7. See: (a) Perch, N. S.; Pei, T.; Widenhoefer, R. A. J. Org. Chem. 2000, 65, 3836. (b) Curran, D. P.; Shen, W. J. Am. Chem. Soc. 1993, 115, 6051.
(8) (a) Pappalardo, D.; Mazzeo, M.; Antinucci, S.; Pellecchia, C. Macromolecules 2000, 33, 9483. (b) Cherian, A. E.; Lobkovsky, E. B.; Coates, G. W. Chem. Commun. 2003, 2566. (c) Cherian, A. E.; Rose, J. M.; Lobkovsky, E. B.; Coates, G. W. J. Am. Chem. Soc. 2005, 127, 13770.
(9) Addition of MeCN to $\mathbf{A}([\mathrm{MeCN}] /[\mathbf{A}]=10)$ shifts the carbonyl carbon signal to $\delta 172.0$ and 171.1 and appearance of the carbon signals of MeCN coordinated to Pd at $\delta 104.8$ and 12.1.
JA058408P

[^0]: ${ }^{a}$ Reaction conditions: Pd complex $=0.01 \mathrm{mmol}, \mathrm{NaBARF}=0.012$

